
MonetDB/X100 - A DBMS In The CPU Cache

Marcin Zukowski, Peter Boncz, Niels Nes, Sándor Héman
Centrum voor Wiskunde en Informatica

Kruislaan 413, Amsterdam, The Netherlands
{M.Zukowski, P.Boncz, N.Nes, S.Heman}@cwi.nl

Abstract

X100 is a new execution engine for the MonetDB system, that improves execution speed and over-
comes its main memory limitation. It introduces the concept of in-cache vectorized processing that
strikes a balance between the existing column-at-a-time MIL execution primitives of MonetDB and the
tuple-at-a-time Volcano pipelining model, avoiding their drawbacks: intermediate result materializa-
tion and large interpretation overhead, respectively. We explain how the new query engine makes bet-
ter use of cache memories as well as parallel computation resources of modern super-scalar CPUs.
MonetDB/X100 can be one to two orders of magnitude faster than commercial DBMSs and close to
hand-coded C programs for computationally intensive queries on in-memory datasets. To address larger
disk-based datasets with the same efficiency, a new ColumnBM storage layer is developed that boosts
bandwidth using ultra lightweight compression and cooperative scans.

1 Introduction

The computational power of database systems is known to be lower than hand-written (e.g. C++) programs.
However, the actual performance difference can be surprisingly large. Table 1 shows the execution time of
Query 1 of the TPC-H benchmark run on various database systems and implemented as a separate program
(with data cached in the main memory in all situations). We choose Query 1 as it is a simple single-scan query
(no joins), that calculates a small aggregated result, thus mainly exposing the raw processing power of the
system. The results show that most DBMSs are orders of magnitude slower than hand-written code.

DBMS “X” MySQL 4.1 MonetDB/MIL MonetDB/X100 hand-coded
28.1s 26.6s 3.7s 0.60s 0.22s

Table 1: TPC-H Query 1 performance on various systems (scale factor 1)

We argue that the poor performance of MySQL and the commercial RDBMS “X” is related to the Volcano
iterator pipelining model [6]. While the Volcano approach is elegant and efficient for I/O bound queries, in
computation-intensive tasks, its tuple-at-a-time execution makes runtime interpretation overhead dominate exe-
cution. That is, the time spent by the RDBMS on actual computations is dwarfed by the time spent interpreting

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

. . . Query tree . . .

Decompression

1.19

1998−09−03

Disk Disk Network

selection
vector

X100
execution
engine

CPU

Storage

vat_price

Select

Project

selection
vector

shipdate returnflag extprice

hash table maintenance aggr_sum_flt_col

map_mul_flt_val_flt_col

map_hash_chr_col

returnflag sum_vat_price

the cache
vectors fit in

Cache

Aggregate

Scan

vectors
contain multiple
values of a single
attribute

primitives
process entire
vectors at a time

operators
process sets
of tuples
represented as
aligned vectors

select_lt_date_col_date_val

returnflagshipdate

Scan
extprice

ColumnBM

Main
memory in DSM

data

�
�
�

�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

1 2 3 4

5 76
1 2 3

1 2 3

3

67

5

4

4

Figure 1: X100 – architecture overview and execution layer example

the expressions in a query tree, and looking up the needed attribute values in pages storing tuples in the N-ary
storage model (NSM). As a result, quite a high number of CPU instructions are needed for each simple compu-
tational operation occurring in a query. Additionally, the instructions per cycle (IPC) efficiency achieved tends
to be low, because the tuple-at-a-time model hides from the CPU most parallel execution opportunities, namely
those provided by performing computations for different tuples in an overlapping fashion.

MonetDB [2], developed at CWI 1, is an alternative approach to building a query execution system. Its
MIL algebra [3] minimizes the interpretation overhead by providing execution primitives that process data in
a column-at-a-time fashion. Since MonetDB uses vertically decomposed storage model (DSM) [5], where
columns are simple arrays, and each primitive performs only one fixed operation on the input data, the primitive
implementation boils down to a sequential loop over aligned input arrays. Modern compilers can apply loop
pipelining to such code, allowing MIL primitives to achieve high IPC on super-scalar CPUs. However, the
column-at-a-time execution model introduces the extra cost of intermediate result materialization, which is only
sustainable inside main memory, thus limiting the scalability of the system.

Figure 1 presents the architecture of X100, a new execution engine for MonetDB that combines the benefits
of low-overhead column-wise query execution with the absence of intermediate result materialization in the
Volcano iterator model. One of its distinguishing features is vectorized execution: instead of single tuples, entire
vectors of values are passed through the pipeline. Another is in-cache processing: all the execution is happening
within the CPU cache, using main memory only as a buffer for I/O and large intermediate data structures. These
techniques make X100 execute efficiently on modern CPUs and allow it to achieve raw performance comparable
to C code.

To bring the high-performance query processing of X100 to large disk-based datasets, a new ColumnBM
storage manager is currently being developed. It focuses on satisfying the high bandwidth requirements of X100
by applying ultra lightweight compression for boosting bandwidth and cooperative scans for optimizing multi-
query scenarios. Preliminary results show that it often achieves performance close to main memory execution
without the need for excessive numbers of disks.

The outline of this article is as follows. In Section 2 we describe the hardware features important for the
design of X100. Then, the system architecture is presented, concentrating on query execution in Section 3 and
on the ColumnBM storage manager in Section 4. Finally we conclude and discuss future work.

1MonetDB is now in open-source, see monetdb.cwi.nl

2

2 Modern CPU features

In the last decade, a CPU clock-speed race resulted in dividing execution of a single instruction into an instruc-
tion pipeline of simple stages. The length of this pipeline continuously increases, going as far as 17 stages in
AMD Opteron and 31 stages in Intel Pentium4. Another innovation found in modern super-scalar CPUs is the
increase in number of processing (pipeline) units. For example, the AMD Opteron has 2 load/store units, 3
integer units and 3 floating point units, and allows for executing a mix of 3 instructions per cycle (IPC).

To fully exploit the pipelines, the CPU needs to know which instructions will be executed next. In the case
of conditional branches, the CPU usually guesses which path the program will follow using a branch prediction
mechanism and performs speculative execution of the chosen code. However, if a branch misprediction occurs,
the pipeline needs to be flushed and the processing restarts with an alternative route. Obviously, with longer
pipelines more instructions are flushed, increasing the performance penalty.

1) original code
for(i=0;i<n;i++) {

t=a[i]+b[i];
x[i]=t*c[i];

}

2) loop pipelining
for(i=0;i<n;i+=8) {

t0=a[i]+b[i];
t1=a[i+1]+b[i+1];
...
t7=a[i+7]+b[i+7];
x[i]=t0*c[i];
x[i+1]=t1*c[i+1];
...
x[i+7]=t7*c[i+7];

}

Figure 2: Loop Pipelining

Another feature required to fully exploit available execution units is instruction
independence. For example, when calculating a=b+c;d=b*c; both a and d can be
calculated independently using two units. However, for a=b+c;d=a*c; process-
ing of d has to be delayed until a is evaluated, resulting in just one processing unit
being used. Figure 2 shows how loop pipelining eliminates this problem by inter-
leaving the computation of multiple loop iterations. That is, x[i] is scheduled 8
instructions after the computation of t0 started, making the result of t0 immedi-
ately available for use. A similar effect can be achieved without compiler by a CPU
that implements out-of-order execution, allowing it to execute instructions further
up the stream (i.e. belonging to next loop iterations) while earlier instructions still
wait on the result of another. Crucially, these techniques only work when a loop
processes a large number of independent iterations. This property of the execution
system, already present in MonetDB/MIL where one operation is executed on an
entire column in a tight loop, is further improved in X100.

Among the features of modern CPUs, cache memories received most attention from the DBMS community.
A growing family of cache-conscious algorithms reduce access to main memory by tuning the access pattern
of query processing algorithms and data structures [11, 1, 9, 8]. X100 goes even further by limiting its entire
execution engine to the cache, as presented in the next section.

3 X100 architecture

The X100 engine is designed for in-cache execution, which means that the only “randomly” accessible memory
is the CPU cache, and main memory is already considered part of secondary storage, used in the buffer manager
for buffering I/O operations and large intermediate results. The other main principle behind X100 is vectorized
execution, sketched in Figure 1:

• vertically decomposed tables are further partitioned horizontally into small chunks called vectors.

• a set of aligned vectors (one for each attribute), representing a set of tuples, is a single data unit in the
execution pipeline.

• an optional selection vector contains the positions of the tuples currently taking part in processing. This
removes the need for the extra after-selection projection steps present in MonetDB/MIL.

• the control logic of the operators is common for all data types, arithmetic functions, predicates etc.

• the actual data processing in the operators is performed by a set of execution primitives - simple, special-
ized and CPU-efficient functions.

3

 1 4 16 64 256 1K 4K 16K 64K 256K 1M
 0.1

 1

 10

26.6

 100

DBMS "X"
MySQL 4.1

28.1

"tuple at a time"

interpretation
dominates
execution

6M4M

MonetDB/X100

in−cache materialization

query without selection

materialization overhead
main−memory

MonetDB/MIL
"column at a time"

T
im

e
(s

ec
on

ds
)

0.60

0.22
Hand−Coded
C Program

"vector at a time"

3.7

2.4

vectors start to exceed
CPU cache, causing
extra memory traffic

interpretation
overhead
decreases

low interpretation overhead

input time avg. X100 primitive
count (us) cycles

6M 13307 3.0 select lt usht col usht val

5.9M 10039 2.3 map sub flt val flt col

5.9M 9385 2.2 map mul flt col flt col

5.9M 9248 2.1 map mul flt col flt col

5.9M 10254 2.4 map add flt val flt col

5.9M 13052 3.0 map uidx uchr col

5.9M 14712 3.4 map directgrp uidx col uchr col

5.9M 28058 6.5 aggr sum flt col uidx col

5.9M 28598 6.6 aggr sum flt col uidx col

5.9M 27243 6.3 aggr sum flt col uidx col

5.9M 26603 6.1 aggr sum flt col uidx col

5.9M 27404 6.3 aggr sum flt col uidx col

5.9M 18738 4.3 aggr count uidx col

Figure 3: TPC-H Query 1 performance in X100 with varying
vector size (in tuples, horizontal axis)

Table 2: MonetDB/X100 performance trace
during TPC-H Query 1 (primitives)

The execution primitive for multiplication of two vectors of floating point numbers might look like this:

int map_mul_flt_col_flt_col(int n, flt* res, flt* col1, flt* col2, int *sel)
{

for(int i=0; i<n; i++)
res[sel[i]] = col1[sel[i]] * col2[sel[i]];

return n;
}

The simplicity of these primitives allows compilers to produce code that achieve IPC of over 2 and, as
Table 2 shows, spend only a few cycles per tuple. In the case of a multiplication of two values, X100 spends
2 cycles per tuple, whereas MySQL spends 49 [4]. Complex expressions must be executed in X100 by calling
multiple primitives that each materialize intermediate results. While this materialization is in-cache, hence
highly efficient, it still causes a high ratio of load-store instructions. For example, the multiplication primitive
reads from sel, col1 and col2, and writes in res, thus needing 4 load/stores for 1 ”work” instruction. A hand-
coded C program does not need these load/stores as subexpression results are passed through CPU registers.
To overcome this problem, primitives in X100 are generated from a so-called signature request and a code
pattern. This allows X100 to generate compound primitives that execute an entire expression subtree (e.g.
(a*1.19+b)*0.95). Currently, primitive generation is predefined, but the ultimate goal is to allow a query
optimizer to generate and compile compound primitives in a just-in-time fashion.

A key tuning factor in X100 is the size of the vectors, which can be chosen at run-time. Figure 3 shows the
performance of MonetDB/X100 on TPC-H Query 1 with vector sizes varying from 1 (tuple-at-a-time) to 6M (the
entire table: column-at-a-time). For better understanding, we also plotted the results of MySQL, DBMS ”X”,
MonetDB/MIL and the hand-coded C program from Table 1. The performance of X100 at vector size 1 is highly
similar to that of the relational DBMS systems. As the vector size is increased, performance of MonetDB/X100
improves by two orders of magnitude, clearly showing that interpretation overhead was the bottleneck. With
further increase, however, the cache size boundary is crossed and cache misses start to occur. In other words,
the materialized intermediate results become too big, making the query memory bandwidth bound. At size 6M,
we indeed observe the performance of MonetDB/X100 to be suboptimal and highly similar to MonetDB/MIL.
MonetDB/MIL is slower mainly due to materialization the of 99% selection of Query 1, which is avoided in
X100 thanks to selection vectors. With this selection omitted, the performance of X100 exactly coincides with
MIL.

4

Figure 4: Performance of vari-
ous compression algorithms on
example TPC-H data

 0

 1

 2

 3

 4

 5

 6

 7

211815141211765431

C
om

pr
es

si
on

 r
at

io
 /

sp
ee

du
p

TPC-H Query

X100 - 1 x Itanium,

 12GB of RAM,

 in-memory

DB2 - 4 x Itanium,

 32GB of RAM,

 112 SCSI disks

Compression ratio
Speedup

Figure 5: Compression ratio and performance
improvement on a subset of TPC-H queries

ColumnBM

CScan CScan CScan

ScanScanScan

Buffer
Manager

Figure 6: Scan process-
ing in a traditional system
and in the ColumnBM

4 ColumnBM

While the X100 execution engine is efficient in main memory scenarios, achieving similar performance for disk-
based data is a real challenge. Due to its raw computational speed, MonetDB/X100 exhibits an extreme hunger
for I/O bandwidth. As an extreme example, TPC-H Query 6 uses 216MB of data (SF=1), and is processed in
MonetDB/X100 in less than 100 ms, resulting in a bandwidth requirement of ca. 2.5GB per second. For most
other queries this requirement is lower, but still in the range of hundreds of megabytes per second. Clearly, such
bandwidth is hard to achieve except by using expensive storage systems consisting of large numbers of disks.
ColumnBM combines three techniques (DSM, compression and cooperative scans) to combat this problem.

DSM. ColumnBM vertically fragments tables on disk using DSM, which saves bandwidth if queries scan a
table without using all columns. Its main disadvantage is an increased cost of updates: a single row modifica-
tion results in one I/O per each influenced column. ColumnBM tackles this problem by treating data chunks
as immutable objects and storing modifications in the (in-memory) delta structures, periodically updating the
chunks [4]. During the scan, data from disk and delta structures are merged, providing the execution layer with
a consistent state. While ColumnBM uses DSM, this is not strictly required by the X100 execution model. The
rationale behind the in-cache column-wise layout (i.e. vectors) in X100 is not optimizing memory storage or re-
ducing I/O bandwidth, but to allow a compiler to detect loop-pipelining opportunities in its execution primitives.
To store data with a high-update rate, ColumnBM will also support the PAX [1] storage scheme, which stores
entire tuples in disk blocks, but uses vectors to represent the columns inside such blocks.

Compression. While compression in databases was proposed by many researchers [7, 10], we introduce two
novel techniques: ultra lightweight compression and into-cache decompression. Traditional compression algo-
rithms usually try to maximize the compression ratio, making them too expensive for use in a DBMS. X100
introduces a family of new highly CPU-efficient compression algorithms, specifically designed to create a
(de)compression kernel, that compiles into a pipelinable loop by making it simple, predictable and eliminat-
ing all if-then-else constructs. As Figure 4 shows, these new algorithms achieve a throughput of over 1 GB/s
during compression and a few GB/s in decompression, beating speed-tuned general purpose algorithms like
LZRW and LZO, while still obtaining comparable compression ratios. Preliminary experiments presented in
Figure 5 show the speedup of the decompressed queries to be close to the compression ratio, which in case of
TPC-H allows for a bandwidth (and performance) increase of a factor 3.

5

Most database systems employ decompression right after reading data from the disk, storing buffer pages
in uncompressed form. This solution requires data to cross the memory-cache boundary three times: when it
is delivered to the CPU for decompression, when uncompressed data is stored back in the buffer, and finally
when it is used by the query. Since such approach would make X100 decompression routines memory-bound,
ColumnBM stores disk pages in a compressed form and decompresses them just before execution, on a per-
vector granularity. Thus (de)compression is performed on the boundary between CPU cache and main memory,
rather than between main memory and disk. This approach nicely fits the delta-based update mechanism, as
merging the deltas can be applied after decompression, and chunks need to be re-compressed only periodically.

Cooperative Scans. While compression is tuned to improve performance of isolated queries, it is often the
case that multiple queries are running at the same time, often fighting for disk bandwidth. If they read the same
columns, ColumnBM applies cooperative scans [12], a technique in which queries, instead of reading data in a
fixed sequential order, try to reuse data already buffered by other queries. Disk accesses are scheduled to satisfy
the largest possible number of ”starving” queries. Preliminary results show that X100 on a single CPU can
sustain a load of 30 I/O bound queries (TPC-H Query 6) without performance loss.

5 Conclusions and future work

In this article we presented X100, a novel execution engine for MonetDB. By applying vectorized in-cache
execution, it efficiently exploits the features of modern CPUs and allows for raw in-memory performance one
to two orders of magnitude higher than other systems. Additionally, we discussed ColumnBM, a new storage
system that enables scaling MonetDB to large disk-based datasets.

X100 and ColumnBM are still in an experimental stage. Both components will play a role in our future
research into architecture-aware query processing, e.g. looking at new CPU features such as SMT and CMT.

From a software point of view, X100 is part of the MonetDB software family so it will re-use its API
infrastructure and query front-ends (SQL and XQuery). X100 is already being used in multimedia information
retrieval on the TREC-VIDEO collections. Other applications on our agenda for X100 are data mining and
analysis of astronomy datasets.

References

[1] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. Weaving Relations for Cache Performance. In Proc. VLDB,
2001.

[2] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications. Ph.d. thesis, Universiteit
van Amsterdam, May 2002.

[3] P. A. Boncz and M. L. Kersten. MIL Primitives for Querying a Fragmented World. VLDB J., 8(2):101–119, 1999.
[4] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution. In Proc. CIDR, 2005.
[5] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model. In Proc. SIGMOD, 1985.
[6] G. Graefe. Volcano - an extensible and parallel query evaluation system. IEEE TKDE, 6(1):120–135, 1994.
[7] G. Graefe and L. D. Shapiro. Data compression and database performance. In Proc. ACM/IEEE-CS Symp. on Applied

Computing, 1991.
[8] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Main-Memory Join On Modern Hardware. IEEE TKDE,

14(4):709–730, 2002.
[9] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main Memory. In Proc. SIGMOD, 2000.

[10] M. Roth and S. van Horn. Database compression. SIGMOD Rec., 22(3):31–39, September 1993.
[11] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious algorithms for relational query processing. In Proc. VLDB,

1994.
[12] M. Zukowski, P. A. Boncz, and M. L. Kersten. Cooperative scans. Technical Report INS-E0411, CWI, December

2004.

6

